Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of clouds on photolysis and oxidants in the troposphere

Identifieur interne : 000189 ( PascalFrancis/Corpus ); précédent : 000188; suivant : 000190

Effect of clouds on photolysis and oxidants in the troposphere

Auteurs : XUEXI TIE ; Sasha Madronich ; Stacy Walters ; RENYI ZHANG ; Phil Rasch ; William Collins

Source :

RBID : Pascal:04-0267723

Descripteurs français

English descriptors

Abstract

Cloud layers in the troposphere influence photolysis rates (J values) and hence concentrations of chemical species. In order to study the impact of clouds on photolysis rates and oxidants, we have developed a simplified version of the National Center for Atmospheric Research (NCAR) Tropospheric Ultraviolet-Visible (TUV) model and have coupled the simplified TUV (otherwise known as the fast TUV (FTUV)) into the NCAR/ Atmospheric Chemistry Division global transport chemical model (Model for Ozone and Related Chemical Tracers (MOZART-2)). The FTUV model has the same physical processes as the TUV model, except that the wavelength bins between 121 and 750 nm are reduced from 140 to 17. As a result, FTUV is about 8 times faster than the original TUV. Differences in the calculated photolysis rates between TUV and FTUV are generally less than 5% in the troposphere. Subgrid vertical distributions of clouds are also considered in the calculation of photolysis rates in MOZART-2. The method used in this study is a mixed maximum and random overlap scheme. The subgrid method increases the computation time for photolysis rates by a factor of 3 compared to a simple method in which clouds are uniformly distributed over the MOZART-2 grids. Our calculation shows that the uniform cloud distribution method tends to significantly overestimate back scattering on the top of clouds and overestimates the impact on photochemistry in the troposphere. The results suggest that clouds have important impacts on tropospheric chemistry. Global mean OH concentration increases by about 20% due to the impact of clouds. As a result, the calculated CH4 lifetime changes to 11 years for clear sky and 9 years for cloudy sky. The latter value is closer to the methane lifetime estimated from previous studies. Calculated CO surface concentrations are compared with observed values, showing an improvement when the impact of clouds on the photolysis rates is taken into account. Clouds also have important impacts on tropospheric ozone budget. Our calculation suggest that because of clouds, the globally averaged photolysis rates of J[O3], J[CH2O], and J[NO2] are enhanced in the troposphere by about 12, 13, and 13%, respectively, leading to an 8% increase in the tropospheric O3 concentrations. Our study suggests that clouds strongly influence photolysis rates and hence play an important role in controlling the concentrations of the tropospheric oxidants. Such effects should be carefully considered and included in regional and global chemical transport models.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 108
A06       @2 D20
A08 01  1  ENG  @1 Effect of clouds on photolysis and oxidants in the troposphere
A11 01  1    @1 XUEXI TIE
A11 02  1    @1 MADRONICH (Sasha)
A11 03  1    @1 WALTERS (Stacy)
A11 04  1    @1 RENYI ZHANG
A11 05  1    @1 RASCH (Phil)
A11 06  1    @1 COLLINS (William)
A14 01      @1 Atmospheric Chemistry Division, National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Department of Atmospheric Sciences, Texas A&M University @2 College Station, Texas @3 USA @Z 4 aut.
A14 03      @1 Climate and Global Dynamics Division, National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 5 aut. @Z 6 aut.
A20       @2 AAC5.1-AAC5.22
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000118947490210
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 40 ref.
A47 01  1    @0 04-0267723
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 Cloud layers in the troposphere influence photolysis rates (J values) and hence concentrations of chemical species. In order to study the impact of clouds on photolysis rates and oxidants, we have developed a simplified version of the National Center for Atmospheric Research (NCAR) Tropospheric Ultraviolet-Visible (TUV) model and have coupled the simplified TUV (otherwise known as the fast TUV (FTUV)) into the NCAR/ Atmospheric Chemistry Division global transport chemical model (Model for Ozone and Related Chemical Tracers (MOZART-2)). The FTUV model has the same physical processes as the TUV model, except that the wavelength bins between 121 and 750 nm are reduced from 140 to 17. As a result, FTUV is about 8 times faster than the original TUV. Differences in the calculated photolysis rates between TUV and FTUV are generally less than 5% in the troposphere. Subgrid vertical distributions of clouds are also considered in the calculation of photolysis rates in MOZART-2. The method used in this study is a mixed maximum and random overlap scheme. The subgrid method increases the computation time for photolysis rates by a factor of 3 compared to a simple method in which clouds are uniformly distributed over the MOZART-2 grids. Our calculation shows that the uniform cloud distribution method tends to significantly overestimate back scattering on the top of clouds and overestimates the impact on photochemistry in the troposphere. The results suggest that clouds have important impacts on tropospheric chemistry. Global mean OH concentration increases by about 20% due to the impact of clouds. As a result, the calculated CH4 lifetime changes to 11 years for clear sky and 9 years for cloudy sky. The latter value is closer to the methane lifetime estimated from previous studies. Calculated CO surface concentrations are compared with observed values, showing an improvement when the impact of clouds on the photolysis rates is taken into account. Clouds also have important impacts on tropospheric ozone budget. Our calculation suggest that because of clouds, the globally averaged photolysis rates of J[O3], J[CH2O], and J[NO2] are enhanced in the troposphere by about 12, 13, and 13%, respectively, leading to an 8% increase in the tropospheric O3 concentrations. Our study suggests that clouds strongly influence photolysis rates and hence play an important role in controlling the concentrations of the tropospheric oxidants. Such effects should be carefully considered and included in regional and global chemical transport models.
C02 01  2    @0 220
C02 02  3    @0 001E
C03 01  2  FRE  @0 Nuage @5 26
C03 01  2  ENG  @0 clouds @5 26
C03 01  2  SPA  @0 Nube @5 26
C03 02  X  FRE  @0 Photolyse @5 27
C03 02  X  ENG  @0 Photolysis @5 27
C03 02  X  SPA  @0 Fotolisis @5 27
C03 03  X  FRE  @0 Oxydant @5 28
C03 03  X  ENG  @0 Oxidant @5 28
C03 03  X  SPA  @0 Oxidante @5 28
C03 04  2  FRE  @0 Troposphère @5 29
C03 04  2  ENG  @0 troposphere @5 29
C03 05  X  FRE  @0 Modèle chimique @5 30
C03 05  X  ENG  @0 Chemical model @5 30
C03 05  X  SPA  @0 Modelo químico @5 30
C03 06  3  FRE  @0 Chimie atmosphérique @5 31
C03 06  3  ENG  @0 Atmospheric chemistry @5 31
C03 07  2  FRE  @0 Ozone @5 32
C03 07  2  ENG  @0 ozone @5 32
C03 07  2  SPA  @0 Ozono @5 32
C03 08  2  FRE  @0 Traceur @5 33
C03 08  2  ENG  @0 tracers @5 33
C03 08  2  SPA  @0 Trazador @5 33
C03 09  X  FRE  @0 Répartition verticale @5 34
C03 09  X  ENG  @0 Vertical distribution @5 34
C03 09  X  SPA  @0 Distribución vertical @5 34
C03 10  2  FRE  @0 Photochimie @5 35
C03 10  2  ENG  @0 photochemistry @5 35
C03 11  X  FRE  @0 Durée vie @5 36
C03 11  X  ENG  @0 Lifetime @5 36
C03 11  X  SPA  @0 Tiempo vida @5 36
C03 12  X  FRE  @0 Ciel serein @5 37
C03 12  X  ENG  @0 Clear sky @5 37
C03 12  X  SPA  @0 Cielo sereno @5 37
C03 13  X  FRE  @0 Ciel couvert @5 38
C03 13  X  ENG  @0 Cloudy sky @5 38
C03 13  X  SPA  @0 Cielo cubierto @5 38
C03 14  2  FRE  @0 Méthane @5 39
C03 14  2  ENG  @0 methane @5 39
C03 14  2  SPA  @0 Metano @5 39
N21       @1 166
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 04-0267723 INIST
ET : Effect of clouds on photolysis and oxidants in the troposphere
AU : XUEXI TIE; MADRONICH (Sasha); WALTERS (Stacy); RENYI ZHANG; RASCH (Phil); COLLINS (William)
AF : Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Atmospheric Sciences, Texas A&M University/College Station, Texas/Etats-Unis (4 aut.); Climate and Global Dynamics Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (5 aut., 6 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2003; Vol. 108; No. D20; AAC5.1-AAC5.22; Bibl. 40 ref.
LA : Anglais
EA : Cloud layers in the troposphere influence photolysis rates (J values) and hence concentrations of chemical species. In order to study the impact of clouds on photolysis rates and oxidants, we have developed a simplified version of the National Center for Atmospheric Research (NCAR) Tropospheric Ultraviolet-Visible (TUV) model and have coupled the simplified TUV (otherwise known as the fast TUV (FTUV)) into the NCAR/ Atmospheric Chemistry Division global transport chemical model (Model for Ozone and Related Chemical Tracers (MOZART-2)). The FTUV model has the same physical processes as the TUV model, except that the wavelength bins between 121 and 750 nm are reduced from 140 to 17. As a result, FTUV is about 8 times faster than the original TUV. Differences in the calculated photolysis rates between TUV and FTUV are generally less than 5% in the troposphere. Subgrid vertical distributions of clouds are also considered in the calculation of photolysis rates in MOZART-2. The method used in this study is a mixed maximum and random overlap scheme. The subgrid method increases the computation time for photolysis rates by a factor of 3 compared to a simple method in which clouds are uniformly distributed over the MOZART-2 grids. Our calculation shows that the uniform cloud distribution method tends to significantly overestimate back scattering on the top of clouds and overestimates the impact on photochemistry in the troposphere. The results suggest that clouds have important impacts on tropospheric chemistry. Global mean OH concentration increases by about 20% due to the impact of clouds. As a result, the calculated CH4 lifetime changes to 11 years for clear sky and 9 years for cloudy sky. The latter value is closer to the methane lifetime estimated from previous studies. Calculated CO surface concentrations are compared with observed values, showing an improvement when the impact of clouds on the photolysis rates is taken into account. Clouds also have important impacts on tropospheric ozone budget. Our calculation suggest that because of clouds, the globally averaged photolysis rates of J[O3], J[CH2O], and J[NO2] are enhanced in the troposphere by about 12, 13, and 13%, respectively, leading to an 8% increase in the tropospheric O3 concentrations. Our study suggests that clouds strongly influence photolysis rates and hence play an important role in controlling the concentrations of the tropospheric oxidants. Such effects should be carefully considered and included in regional and global chemical transport models.
CC : 220; 001E
FD : Nuage; Photolyse; Oxydant; Troposphère; Modèle chimique; Chimie atmosphérique; Ozone; Traceur; Répartition verticale; Photochimie; Durée vie; Ciel serein; Ciel couvert; Méthane
ED : clouds; Photolysis; Oxidant; troposphere; Chemical model; Atmospheric chemistry; ozone; tracers; Vertical distribution; photochemistry; Lifetime; Clear sky; Cloudy sky; methane
SD : Nube; Fotolisis; Oxidante; Modelo químico; Ozono; Trazador; Distribución vertical; Tiempo vida; Cielo sereno; Cielo cubierto; Metano
LO : INIST-3144.354000118947490210
ID : 04-0267723

Links to Exploration step

Pascal:04-0267723

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of clouds on photolysis and oxidants in the troposphere</title>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Madronich, Sasha" sort="Madronich, Sasha" uniqKey="Madronich S" first="Sasha" last="Madronich">Sasha Madronich</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Renyi Zhang" sort="Renyi Zhang" uniqKey="Renyi Zhang" last="Renyi Zhang">RENYI ZHANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Atmospheric Sciences, Texas A&M University</s1>
<s2>College Station, Texas</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rasch, Phil" sort="Rasch, Phil" uniqKey="Rasch P" first="Phil" last="Rasch">Phil Rasch</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Climate and Global Dynamics Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Collins, William" sort="Collins, William" uniqKey="Collins W" first="William" last="Collins">William Collins</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Climate and Global Dynamics Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0267723</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0267723 INIST</idno>
<idno type="RBID">Pascal:04-0267723</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000189</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effect of clouds on photolysis and oxidants in the troposphere</title>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Madronich, Sasha" sort="Madronich, Sasha" uniqKey="Madronich S" first="Sasha" last="Madronich">Sasha Madronich</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Renyi Zhang" sort="Renyi Zhang" uniqKey="Renyi Zhang" last="Renyi Zhang">RENYI ZHANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Atmospheric Sciences, Texas A&M University</s1>
<s2>College Station, Texas</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rasch, Phil" sort="Rasch, Phil" uniqKey="Rasch P" first="Phil" last="Rasch">Phil Rasch</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Climate and Global Dynamics Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Collins, William" sort="Collins, William" uniqKey="Collins W" first="William" last="Collins">William Collins</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Climate and Global Dynamics Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmospheric chemistry</term>
<term>Chemical model</term>
<term>Clear sky</term>
<term>Cloudy sky</term>
<term>Lifetime</term>
<term>Oxidant</term>
<term>Photolysis</term>
<term>Vertical distribution</term>
<term>clouds</term>
<term>methane</term>
<term>ozone</term>
<term>photochemistry</term>
<term>tracers</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nuage</term>
<term>Photolyse</term>
<term>Oxydant</term>
<term>Troposphère</term>
<term>Modèle chimique</term>
<term>Chimie atmosphérique</term>
<term>Ozone</term>
<term>Traceur</term>
<term>Répartition verticale</term>
<term>Photochimie</term>
<term>Durée vie</term>
<term>Ciel serein</term>
<term>Ciel couvert</term>
<term>Méthane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cloud layers in the troposphere influence photolysis rates (J values) and hence concentrations of chemical species. In order to study the impact of clouds on photolysis rates and oxidants, we have developed a simplified version of the National Center for Atmospheric Research (NCAR) Tropospheric Ultraviolet-Visible (TUV) model and have coupled the simplified TUV (otherwise known as the fast TUV (FTUV)) into the NCAR/ Atmospheric Chemistry Division global transport chemical model (Model for Ozone and Related Chemical Tracers (MOZART-2)). The FTUV model has the same physical processes as the TUV model, except that the wavelength bins between 121 and 750 nm are reduced from 140 to 17. As a result, FTUV is about 8 times faster than the original TUV. Differences in the calculated photolysis rates between TUV and FTUV are generally less than 5% in the troposphere. Subgrid vertical distributions of clouds are also considered in the calculation of photolysis rates in MOZART-2. The method used in this study is a mixed maximum and random overlap scheme. The subgrid method increases the computation time for photolysis rates by a factor of 3 compared to a simple method in which clouds are uniformly distributed over the MOZART-2 grids. Our calculation shows that the uniform cloud distribution method tends to significantly overestimate back scattering on the top of clouds and overestimates the impact on photochemistry in the troposphere. The results suggest that clouds have important impacts on tropospheric chemistry. Global mean OH concentration increases by about 20% due to the impact of clouds. As a result, the calculated CH
<sub>4</sub>
lifetime changes to 11 years for clear sky and 9 years for cloudy sky. The latter value is closer to the methane lifetime estimated from previous studies. Calculated CO surface concentrations are compared with observed values, showing an improvement when the impact of clouds on the photolysis rates is taken into account. Clouds also have important impacts on tropospheric ozone budget. Our calculation suggest that because of clouds, the globally averaged photolysis rates of J[O
<sub>3</sub>
], J[CH
<sub>2</sub>
O], and J[NO
<sub>2</sub>
] are enhanced in the troposphere by about 12, 13, and 13%, respectively, leading to an 8% increase in the tropospheric O
<sub>3</sub>
concentrations. Our study suggests that clouds strongly influence photolysis rates and hence play an important role in controlling the concentrations of the tropospheric oxidants. Such effects should be carefully considered and included in regional and global chemical transport models.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>108</s2>
</fA05>
<fA06>
<s2>D20</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of clouds on photolysis and oxidants in the troposphere</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XUEXI TIE</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MADRONICH (Sasha)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WALTERS (Stacy)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RENYI ZHANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RASCH (Phil)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>COLLINS (William)</s1>
</fA11>
<fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Atmospheric Sciences, Texas A&M University</s1>
<s2>College Station, Texas</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Climate and Global Dynamics Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s2>AAC5.1-AAC5.22</s2>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000118947490210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0267723</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cloud layers in the troposphere influence photolysis rates (J values) and hence concentrations of chemical species. In order to study the impact of clouds on photolysis rates and oxidants, we have developed a simplified version of the National Center for Atmospheric Research (NCAR) Tropospheric Ultraviolet-Visible (TUV) model and have coupled the simplified TUV (otherwise known as the fast TUV (FTUV)) into the NCAR/ Atmospheric Chemistry Division global transport chemical model (Model for Ozone and Related Chemical Tracers (MOZART-2)). The FTUV model has the same physical processes as the TUV model, except that the wavelength bins between 121 and 750 nm are reduced from 140 to 17. As a result, FTUV is about 8 times faster than the original TUV. Differences in the calculated photolysis rates between TUV and FTUV are generally less than 5% in the troposphere. Subgrid vertical distributions of clouds are also considered in the calculation of photolysis rates in MOZART-2. The method used in this study is a mixed maximum and random overlap scheme. The subgrid method increases the computation time for photolysis rates by a factor of 3 compared to a simple method in which clouds are uniformly distributed over the MOZART-2 grids. Our calculation shows that the uniform cloud distribution method tends to significantly overestimate back scattering on the top of clouds and overestimates the impact on photochemistry in the troposphere. The results suggest that clouds have important impacts on tropospheric chemistry. Global mean OH concentration increases by about 20% due to the impact of clouds. As a result, the calculated CH
<sub>4</sub>
lifetime changes to 11 years for clear sky and 9 years for cloudy sky. The latter value is closer to the methane lifetime estimated from previous studies. Calculated CO surface concentrations are compared with observed values, showing an improvement when the impact of clouds on the photolysis rates is taken into account. Clouds also have important impacts on tropospheric ozone budget. Our calculation suggest that because of clouds, the globally averaged photolysis rates of J[O
<sub>3</sub>
], J[CH
<sub>2</sub>
O], and J[NO
<sub>2</sub>
] are enhanced in the troposphere by about 12, 13, and 13%, respectively, leading to an 8% increase in the tropospheric O
<sub>3</sub>
concentrations. Our study suggests that clouds strongly influence photolysis rates and hence play an important role in controlling the concentrations of the tropospheric oxidants. Such effects should be carefully considered and included in regional and global chemical transport models.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Nuage</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>clouds</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Nube</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Photolyse</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Photolysis</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Fotolisis</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxydant</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Oxidant</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Oxidante</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modèle chimique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Chemical model</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelo químico</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Chimie atmosphérique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Atmospheric chemistry</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>ozone</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>tracers</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Répartition verticale</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Vertical distribution</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Distribución vertical</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Photochimie</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>photochemistry</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Durée vie</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Lifetime</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Tiempo vida</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Ciel serein</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Clear sky</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Cielo sereno</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ciel couvert</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cloudy sky</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cielo cubierto</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Méthane</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>methane</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Metano</s0>
<s5>39</s5>
</fC03>
<fN21>
<s1>166</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0267723 INIST</NO>
<ET>Effect of clouds on photolysis and oxidants in the troposphere</ET>
<AU>XUEXI TIE; MADRONICH (Sasha); WALTERS (Stacy); RENYI ZHANG; RASCH (Phil); COLLINS (William)</AU>
<AF>Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Atmospheric Sciences, Texas A&M University/College Station, Texas/Etats-Unis (4 aut.); Climate and Global Dynamics Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (5 aut., 6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2003; Vol. 108; No. D20; AAC5.1-AAC5.22; Bibl. 40 ref.</SO>
<LA>Anglais</LA>
<EA>Cloud layers in the troposphere influence photolysis rates (J values) and hence concentrations of chemical species. In order to study the impact of clouds on photolysis rates and oxidants, we have developed a simplified version of the National Center for Atmospheric Research (NCAR) Tropospheric Ultraviolet-Visible (TUV) model and have coupled the simplified TUV (otherwise known as the fast TUV (FTUV)) into the NCAR/ Atmospheric Chemistry Division global transport chemical model (Model for Ozone and Related Chemical Tracers (MOZART-2)). The FTUV model has the same physical processes as the TUV model, except that the wavelength bins between 121 and 750 nm are reduced from 140 to 17. As a result, FTUV is about 8 times faster than the original TUV. Differences in the calculated photolysis rates between TUV and FTUV are generally less than 5% in the troposphere. Subgrid vertical distributions of clouds are also considered in the calculation of photolysis rates in MOZART-2. The method used in this study is a mixed maximum and random overlap scheme. The subgrid method increases the computation time for photolysis rates by a factor of 3 compared to a simple method in which clouds are uniformly distributed over the MOZART-2 grids. Our calculation shows that the uniform cloud distribution method tends to significantly overestimate back scattering on the top of clouds and overestimates the impact on photochemistry in the troposphere. The results suggest that clouds have important impacts on tropospheric chemistry. Global mean OH concentration increases by about 20% due to the impact of clouds. As a result, the calculated CH
<sub>4</sub>
lifetime changes to 11 years for clear sky and 9 years for cloudy sky. The latter value is closer to the methane lifetime estimated from previous studies. Calculated CO surface concentrations are compared with observed values, showing an improvement when the impact of clouds on the photolysis rates is taken into account. Clouds also have important impacts on tropospheric ozone budget. Our calculation suggest that because of clouds, the globally averaged photolysis rates of J[O
<sub>3</sub>
], J[CH
<sub>2</sub>
O], and J[NO
<sub>2</sub>
] are enhanced in the troposphere by about 12, 13, and 13%, respectively, leading to an 8% increase in the tropospheric O
<sub>3</sub>
concentrations. Our study suggests that clouds strongly influence photolysis rates and hence play an important role in controlling the concentrations of the tropospheric oxidants. Such effects should be carefully considered and included in regional and global chemical transport models.</EA>
<CC>220; 001E</CC>
<FD>Nuage; Photolyse; Oxydant; Troposphère; Modèle chimique; Chimie atmosphérique; Ozone; Traceur; Répartition verticale; Photochimie; Durée vie; Ciel serein; Ciel couvert; Méthane</FD>
<ED>clouds; Photolysis; Oxidant; troposphere; Chemical model; Atmospheric chemistry; ozone; tracers; Vertical distribution; photochemistry; Lifetime; Clear sky; Cloudy sky; methane</ED>
<SD>Nube; Fotolisis; Oxidante; Modelo químico; Ozono; Trazador; Distribución vertical; Tiempo vida; Cielo sereno; Cielo cubierto; Metano</SD>
<LO>INIST-3144.354000118947490210</LO>
<ID>04-0267723</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000189 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000189 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0267723
   |texte=   Effect of clouds on photolysis and oxidants in the troposphere
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023